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A B S T R A C T  

We introduce a new Condensed History algorithm for the Monte Carlo simu- 
lation of electron transport. To obtain more accurate simulations, the new algorithm 
preserves the mean position and the variance in the mean position exactly for elec- 
trons that have traveled a given path length and are traveling in a given direction. 
This is accomplished by deriving the zeroth-, first-, and second-order spatial moments 
of the Spencer-Lewis equation and employing this information directly in the Con- 
densed History process. Numerical calculations demonstrate the advantages of our 
method over standard Condensed History methods. 

1. I N T R O D U C T I O N  

Monte Carlo Condensed History (CH) algorithms are often used to simulate 
electron transport processes. These methods overcome the computational burdens of 
single collision models by “condensing” multiple electron collisions into large steps of 
user-specified path length so. Each Monte Carlo electron travels this path length in 
each CH step. Existing CH schemes employ a splitting routine (Larsen, 
the range 0 < s < SO to approximate the Boltzmann transport process. 
devised a method in which the path length step is split into two substeps, each with 
size s0 /2 .  A more accurate “Random Hinge” CH method (Baro, 1995) splits the step 
into two substeps “randomly;” the first substep has length [so,  while the second has 
size (1 - e)so, with e a random number on the unit interval. 

These conventional CH algorithms are effective for many problems (Ballinger, 
1992). However, they become inaccurate when the scattering becomes less forward- 
peaked. This occurs particularly at low energies (E < 100 keV) or in heavy (Z > 40) 
materials. In this case, conventional CH methods often fail to  determine the electron’s 
position accurately. 
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In this paper we describe a new non-splitting CH algorithm that more accu- 
determines the particles’ locations. This is accomplished by preserving the 
position of electrons as well as the variances in the mean position. These 

means and variances are obtained directly from the zeroth-, first-, and second-order 
spatial moments of the Boltzmann equation. Thus, our new algorithm is related to 
the “Method of Moments,” in which space-angle moments of q5 are obtained exactly 
(Shultis, 1996). [Our CH algorithm requires only spatial moments.] 

The Method of Moments has been used to model many radiation transport 
problems. For electrons, a “moment” analysis has been performed by Larsen (1997) 
for pencil beam problems to obtain analytic expressions for the dose. While this effort 
is somewhat related to the research presented in this paper, Lewis’ (1950) moment 
analysis for multiple scattering is more relevant. Lewis has derived the zeroth-, first-, 
and second-order space-angle moments of the Spencer-Lewis equation. Thus, he ob- 
tains quantities such as the mean depth for all particles that have traveled a path 
length s, regardless of the direction of flight at the end of the step. Our research is 
an extension of Lewis’ work; the moments that we derive are spatial moments only 
- which are functions of both s and direction Q. Thus, we obtain quantities such as 
the mean depth for all particles that, upon traveling a path length s, are traveling in 
a specified direction Q. [This extra information is required for a Monte Carlo simu- 
lation.] When our moments are integrated over all 2, Lewis’ moments are obtained. 
Also, we incorporate these new moments, which are defined by infinite series and 
are more costly to evaluate than the Lewis moments, into a Monte Carlo Condensed 
History algorithm. 

In Section 2, we derive the equations for the spatial moments, and their so- 
lutions. In Section 3, we describe how these solutions yield quantities such as the 
Goudsmit-Saunderson distribution, the mean position, and the variances in the mean 
position. In Section 4, we describe a new Moment Condensed History (MCH) algo- 
rithm, which preserves these moments. In Section 5, we compare numerical results 
using MCH with results from standard Condensed History schemes. These numerical 
results, which include energy deposition (dose) calculations, illustrate the power of 
the MCH method. We conclude with a brief summary in Section 6. 

2. SPATIAL-MOMENT DERIVATIONS 

We begin with the Spencer-Lewis equation, which is derived from the Boltz- 
mann transport equation by applying the Continuous Slowing Down (CSD) approxi- 
mation (Tolar, 1999). In the CSD approximation, particles lose energy continuously 
as they travel in a medium. Thus, through the stopping power, an electron’s energy 
is directly related to the path length s. The Spencer-Lewis equation is given as 

where 
- T = (z, y, z )  = spatial variable , 

- R = (Rz, R,,R,) = (J1-cl‘cos+, d G s i n + , p )  = angular variable , (3) 
C, = Cso = macroscopic scattering cross section , (4) 

and 
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Here Pn,m(p) are the Associated Legendre functions. The Legendre polynomials cor- 
respond to order m = 0: Pn(p) = Pn,o(p). The initial condition specifies one particle 
at the origin of coordinates, traveling along the z-axis in the direction p = 1: 

The equations representing various spatial moments of $ ( E ,  Q, s) are derived next. 

2.1 Zeroth-Order Moment 

To obtain the zeroth-order spatial moment, we integrate Eqs. (1) and (7) over 
all space. That is, we operate on these equations by J-",(.)d3r, and we define the 
following function: 

Upon performing this operation, the following equation for $o(Q, s) is obtained: 

(9) 

(10) 

d -$0(2, s )  + u b O ( s 1 ,  s) = 1. M2- Q') !bo@', 4 del' 1 as 
with initial condition: 

b(P - 1) 
27r 

[Integrating the second (leakage) term in Eq. (1) over all space yields zero, since 
by assumption $ (E, Q, s) vanishes at  Irl = 00.1 For the initial condition given by 
Eq. (lo), $o(Q, s) in Eq. (9) can be solved analytically by expanding in Legendre 
polynomials. The solution is 

$o(Q, 0) = 

where E,, = Eso - Esn. $o(p, s) is the Goudsmit-Saunderson distribution (Goudsmit, 
1940), the exact probability distribution for the direction of flight Q of particles that 
have traveled a path length s. By Eq. (l l) ,  the azimuthal scattering angle qh is 
sampled uniformly on 0 5 qh < 27r, while the cosine of the scattering angle is sampled 
from the distribution function 2 ~ $ ~ ( p ,  s) for p. 

2.2 First-Order Moments 

In Cartesian geometry, three first-order spatial moments exist. One moment 
involves the depth coordinate z; the other two pertain to the transverse coordinates 
x and y. 

and define the functions $zi (2, s) as 
To obtain the first-order moments, we operate on Eqs. (1) and (7) by J-s$ xi(-) d3r,  
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with 
x : i = l  

z : i = 3  
y : i = 2  , 

After an integration by parts on the leakage term, the following differential equation 
and initial condition are obtained for s): 

$x;(Q,O) = 0 * (14) 
These problems contain, in the source terms, the (known) Goudsmit-Saunderson dis- 
tribution function $o(,u, s). 

For the depth-coordinate z (i = 3), the solution to Eqs. (13) and (14) can be 
solved analytically for $,(a, s) by expanding in Legendre polynomials. Omitting the 
algebraic details, the result is: 

For the transverse coordinates x (i = 1) and y (i = 2),  the solutions $,(Q,s) 
and $,(a, s) of Eqs. (13) and (14) can be obtained by expanding in Associated Leg- 
endre functions of order rn = 1. Omitting the algebraic details, we obtain: 

$x(2,4 = $1 (P, s) COS 4 7 

$y@, 4 = $1 (P,  s) sin 4 7 

(16) 

(17) 
where 

2.3 Second-Order Moments 

Now we investigate the second-order spatial moments. Six of these moments 

these moments are algebraically complicated. Despite this complexity, we have shown 
(Tolar, 1999) that including the second-order moments is vital in creating a successful 
MCH algorithm. 

and define the functions 

exist: z 2 2 2  ,x , y  ,xz = zx,yz = zy, and xy = yx. Unfortunately, the solutions for 

Similar to Sections 2.1 and 2.2, we operate on Eqs. (1) and (7) by JFm xi xj (e) d3r 
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with 
' x x  : i = j = l  

yy : i = j = 2  
z z  : i = j = 3  
xx : i = l , j = 3  ' 

yz : i = 2 , j = 3  
, xy : i = l , j = 2  

After an integration by parts on the leakage term, the following equation and initial 
condition are obtained for $xix j  (Q, s): 

= fLj $&7 s) + Q,, $Zj (52,s) > 

$ X i X j  (S2,O) = 0 . 

(20) 

(21) 
These equations contain, in their source terms, the (known) first-order moment func- 
tions described above. The solutions of Eqs. (20) and (21) can be derived by expand- 
ing in higher-order Associated Legendre functions. Omitting the lengthy algebraic 
details, we obtain the following results. 

For i = j = 3,  

For i  = j  = I and i = j  = 2, 

where 
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, 

and 

For i = 1,j = 2, 

Finally, for i = 1,j = 3 and i = 2 , j  = 3, 
h y ( 2 ,  s) = $,"(Pi 4 sin 24 

$&(2, s) = h ( P ,  s) cos 4 
and 

where 
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3. UTILIZING THE SPATIAL MOMENTS 

We now describe how to utilize the spatial moments of the Spencer-Lewis 
equation. The zeroth-order moment provides the Goudsmit-Saunderson distribu- 
tion. The zeroth- and first-order moments provide the mean or average coordinates, 
((IC), (y), ( z ) ) ,  each of which are functions of Q and s. The zeroth- and second-order 
moments enable the variances in the mean coordinates, (o;, oi, of), to be determined, 
as well as the co-variances: (o&, &, o&); each of these six quantities are also func- 
tions of 2 and s. In the following subsections, we discuss these quantities. 

3.1 The Goudsmit-Saunderson Distribution 

The zeroth-order spatial moment, +o@, s), is the Goudsmit-Saunderson dis- 
tribution. As stated in Section 2.1, $o is the probability distribution function for 2 for 
particles that have traveled a path length s. Thus, in every Condensed History step, 
the direction of flight Q is sampled from +o@, s). Doing this is standard practice in 
conventional CH methods, and we retain this in the MCH method. 

3.2 The Mean Coordinates 

Now, we determine the mean position for electrons that, after traveling a path 
length s (specified by the user), are traveling the the direction 2 (obtained from the 
Goudsmit-Saunderson distribution). These mean positions are preserved in our new 
algorithm, but not in conventional Condensed History methods. 

We define the function (xi)(Q, s) as 

7 xi $ ( E ,  2, s )  d3r 
(31) 

-00 
(.i)(Q,S) f 00 

.I- ,$ ( E ,  2, s )  d3r 
-00 

For x3  = z (i = 3), (z)(Q, s) is the mean z-coordinate or depth of particles that, upon 
traveling a path length s, are traveling in the direction Q. From Eqs. (12) and (8), 
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( z )  can be written as 

Before proceeding, we state an interesting result. The mean value of z for 
p = -1 is zero for all s > 0. By setting p = -1 in Eq. (15), we see the expression 
for &( -1, s )  on the right side is zero. This result holds for any differential scattering 
cross section-it is a universal result. 

Likewise, the mean values of z and y of particles that, upon traveling a path 
length s, are traveling in the direction 2, are 

and 

3.3 The Variances in the Mean Coordinates 

The second-order spatial moments obtained in Section 2.3 allow the variances 
in the mean coordinates (as well as all the co-variances) to be determined. Before 
proceeding, it is useful to develop a general definition of the variance between two co- 
ordinates xixj .  (The standard deviation uxixj (2, s) is the square root of the variance.) 
This variance is a function of both Q and s ,  defined by 

Multiplying the two terms in parenthesis and expanding, we obtain: 
2 ax,, (2, s )  = (ZiXj) (Q, s) - (Xi) (2, s )  ( X j ) ( Q , S >  7 

where 

and ( x i ) (2 ,  s )  is given by Eq. (31). 

Thus, the three variances u;(Q,s), ai(Q,s) ,  and a;(Q,s) are found for the 
cases i = j using Eqs. (19), (12), and (8): 

(37) 
2 uxizi(2,  s )  = (x:)(2, s )  - s )  - 

The three co-variances (o&(Q,s), 02~(Q,s), and o~,(L?,s)) are given by Eq. (36). 
These quantities are not zero because individual electrons only approximately travel 
to their mean location. 
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4. THE MOMENT CONDENSED HISTORY ALGORITHM 

Now we describe the Monte Carlo MCH algorithm, which preserves the zeroth-, 
first-, and second-order spatial moments of the Spencer-Lewis equation. Each Con- 
densed History step begins with the user prescribing the path length s, as well as the 
cross sections and stopping powers. Using the CSD approximation, the choice of s 
automatically determines the electron’s energy at the end of the step. 

Given s, the MCH algorithm samples 2, the direction of flight at  the end of 
the step, from the Goudsmit-Saunderson distribution. [This calculation happens in 
all CH methods.] 

Next, with s and 2 known, the mean position 

is evaluated, and the Monte Carlo particle is temporarily placed there. In this step, 
MCH preserves the zeroth- and first-order spatial moments. 

However, instead of rigidly forcing the Monte Carlo particle to remain at this 
(mean) location at  the end of the step, a new position is determined by sampling 
spatial probability distribution functions about the mean position. These new distri- 
butions have zero means, and variances that are directly related to the variances and 
co-variances derived in Section 3.3. This zero-mean deviation from the mean location 
enables the second-order spatial moments to be preserved. 

As long as they have the correct means and variances, any probability distri- 
bution function can be used to preserve the second-order moments. If we ever desire 
to preserve even higher-order moments, then the choice of these distribution func- 
tions must be made more carefully. To make the algorithm efficient, we would like 
to sample three independent, one-dimensional functions. For simplicity, we choose 
Gaussian. distributions. 

Unfortunately, in the (x, y, z )  coordinate system, the particle’s new position 
cannot be determined efficiently. This is a consequence of the non-zero co-variances: 

are zero; thus, three independent one-dimensional Gaussians can be sampled to obtain 
the final position coordinates. These positions must be transformed back to (x, y, z) 
system. This transformation is determined by Tolar (1999) by diagonalizing the 
variance matrix. With the electron’s energy, direction of flight, and (final) position 
known, a MCH step is complete, and one can proceed with subsequent steps in the 
same manner. 

ozy, 2 and oiz. However, a special coordinate system exists in which all co-variances 

5. NUMERICAL COMPARISONS 

We now compare MCH with Random Hinge and with analog Monte Carlo, 
using numerical results from simulations of two simple electron transport problems. 
Both problems involve initially monoenergetic pencil beams. As the electrons in the 
beam slow down to various energies, the mean position and the standard deviation 
in the mean are determined. In addition, we calculate the dose (energy deposited to 
the medium per unit mass) as a function of depth (z-coordinate). 

We consider pencil beams of 20 MeV and 12.5 keV at the origin of the (z, y, z )  
coordinate system traveling down the z-axis in the direction ,u = 1. The beam is 
contained within an infinite, homogeneous medium of aluminum. Since aluminum has 
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Figure 1: Mean Depth of Beam in Aluminum as a Function of Energy (Eo = 20 
MeV). 

a low atomic number (2=13), electrons with energies in the MeV range undergo highly 
forward-peaked scattering. However, as they lose energy, their scattering becomes 
more isotropic. In the 10 keV range, electrons in aluminum scatter fairly isotropically. 
Thus, these two problems provide two different conditions for testing the MCH and 
Random Hinge techniques. 

All the simulations, (analog Monte Carlo, MCH, and Random Hinge) employ 
the CSD approximation. We also use the multigroup approximation to describe the 
energy dependence of the cross sections and stopping powers. For the Condensed 
History schemes, we select the step size s to be the path length required for an 
electron to lose the energy corresponding to the width of one energy group. 

Problem 1: 20 MeV Electron Beam 

The first three figures in this section present the results from a 20 MeV elec- 
tron pencil beam problem. Figure 1 is a plot of the mean depth as a function of the 
electron beam energy. First, the analog Monte Carlo results are shown by a dashed 
line, and they match the exact solution given by Lewis (1950). Second, the results for 
the Random Hinge simulation are displayed by cross symbols (+). These calculations 
are virtually identical to analog Monte Carlo. Random Hinge’s excellent accuracy is 
expected because high energy (MeV) electrons in aluminum undergo highly forward- 
peaked scattering. This forces nearly all electrons to stream down the z-axis with 
minimal transverse deflection until they have reached energies around 10 keV. Con- 
ventional Condensed History algorithms like Random Hinge are effective under these 
conditions. Third, the MCH results, depicted by diamond symbols (o), also reproduce 
the analog Monte Carlo results. This is because ( z ) ( E )  is automatically preserved in 
this algorithm. 

The standard deviation in the mean depth (denoted by sigz) and the rms 
radius (denoted by sigr) are shown in Figure 2 as functions of energy. Similar to 
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Figure 2: Standard Deviation in Mean Depth (sigz) and RMS Radius (sigr) of Beam 
in Aluminum as a Function of Energy (Eo = 20 MeV). 

Figure 1, the results from all the simulations compare very closely to one another. 
MCH reproduces these second-order quantities automatically. All simulations match 
the exact moments derived by Lewis (1950). 

Figure 3 displays the dose as a function of depth. For this problem, an an- 
alytical solution cannot be obtained. Furthermore, unlike the previous calculations, 
the dose is not preserved in the MCH algorithm. Nevertheless, Figure 3 indicates 
very precise agreement between all three methods. (The three lines lie on top of one 
another.) The plot also indicates that nearly zero dose is delivered to any depth to 
the left of the origin; that is, very few particles with MeV energies backscatter in 
aluminum. 

Problem 2: 12.5 keV Electron Beam 

The next three figures are plots of the same parameters for a 12.5 keV electron 
pencil beam in aluminum. Here we see a disparity between the Random Hinge and 
analog Monte Carlo results. Because electrons in this energy range undergo weakly 
anisotropic scattering, Random Hinge cannot accurately predict the mean depth or 
the standard deviations. In Figure 4, Random Hinge estimates a mean depth that is 
about 4.5% higher than the exact solution (analog Monte Carlo). In fact, Kawrakow 
and Bielajew (1998) have shown that Random Hinge is no more accurate than Berger's 
second method in determining ( z ) ( E ) .  MCH, on the other hand, reproduces the mean 
depth exactly. Again, this is an intrinsic feature of the MCH algorithm, which is 
independent of the electrons' energies or how they scatter. 

I t  should be mentioned that the spatial dimensions for the 12.5 keV problem 
are about five orders of magnitude smaller than the dimensions for the 20 MeV 
problem. This is because electrons travel much shorter path lengths in slowing down 
from 12.5 keV than electrons that slow down from 20 MeV. Furthermore, 12.5 keV 
electrons undergo substantial transverse displacement at much smaller depths than 
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Figure 3: Dose Deposited as a Function of Depth into Aluminum (Eo = 20 MeV). 
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Figure 4: Mean Depth of Electron Beam in Aluminum as a Function of Energy 
(Eo = 12.5 keV). 
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20 MeV electrons. For applications including radiation effects studies of electrical 
circuits, spatial dimensions in the tens of micrometers are important. 

Figure 5 indicates that the Random Hinge method estimates a,(E) to be about 
6.3% higher than MCH and analog Monte Carlo for all energies. Although Random 
Hinge determines a,(E) within 1.0% at lower energies, the values of the rms radius 
are about 4.1% too low at higher energies. Kawrakow and Bielajew (1998) have 
shown that indeed Random Hinge limits to the correct values of a,(E) as E + 0. 
Furthermore, they have also indicated that Random Hinge’s estimates for a,(E) do 
not improve with decreasing energies. As expected, MCH calculations agree with the 
analog results for all energies. 

The depth-dose curve for the 12.5 keV beam is illustrated in Figure 6. The 
dose predicted by MCH resembles the analog Monte Carlo distribution more closely 
than the results predicted by Random Hinge. However, as stated before, preserving 
spatial moments does not guarantee that the dose estimates will be exact. Neverthe- 
less, Figure 6 indicates that MCH’s capability of preserving moments enhances the 
accuracy of dose calculations over methods which do not preserve higher-order mo- 
ments. Because of fairly isotropic scattering, the number of electrons that backscatter 
is appreciable. The Random Hinge scheme, which conceptually models backscatter- 
ing more effectively than Berger’s methods, predicts the dose quite accurately for 
negative depths ( z  < 0). 

6.  Conclusions 

- 1 
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In this paper we have described the three-dimensional MCH algorithm, which 
determines electron positions more accurately than current CH methods. By evaluat- 
ing the zeroth-, first-, and second-order spatial moments of the Boltzmann equation 
(given Q and s), MCH preserves the mean position and the standard deviation in the 
mean position exactly for electrons of any energy that have traveled any number of 
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Figure 6: Dose Deposited as a Function of Depth into Aluminum (Eo = 12.5 keV). 

steps. This enables MCH to provide electron transport calculations more accurately 
than existing CH schemes. This is most evident when the scattering is more isotropic 
(problems involving low energy electrons or electron transport in high-Z materials). 
Here, the assumptions underlying conventional Condensed History are not closely 
met. Furthermore, we have shown that the MCH algorithm provides results that 
compare very well to the results from costly analog Monte Carlo. 

Unfortunately, the MCH scheme is more costly per history than current meth- 
ods. This is due to the time required to evaluate the spatial moment functions which, 
like the Goudsmit-Saunderson distribution, are defined by infinite series. In the fu- 
ture, we seek to improve the efficiency of MCH simulations by reducing this expense. 
Techniques such as Molikre theory (1953) and Bielajew’s improvement (1994) already 
exist for approximating the Goudsmit-Saunderson infinite series with simpler func- 
tions. Perhaps these methods could be extended to simplify the evaluation of the 
first- and second-order moments. 

Another approximation involved with Condensed History is the assumption of 
an infinite medium. This approximation is inherent in both existing and our MCH 
algorithms. The spatial moments derived in Section 2 are based on an infinite medium 
and cannot be preserved exactly when electrons cross material interfaces. In other 
publications (Tolar, 1999 and ZOOl) ,  we discuss various compromises that have been 
made to Condensed History algorithms when dealing with finite medium problems. 
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